Abstract

The use of low-temperature and energy-efficient techniques to fabricate composites with tailored interfaces is currently a topic of growing interest. This study reports the proof of concept of a process to fabricate functional multilayer varistor (MLV) devices below 150 °C. In this MLV device, a small volume fraction of polyetherimide polymer is used to engineer ZnO grain boundaries, and the multilayer composite is cofired with base metal internal electrodes via the cold sintering cofired ceramic (CSCC). The resulting dense nanocomposite MLV and controlled nonlinear current–voltage response of the device confirmed the potential of CSCC. This work also opens up the possibility to fabricate multilayer devices for other types of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.