Abstract

AbstractThermoelectric materials convert heat into electricity, with a broad range of applications near room temperature (RT). However, the library of RT high‐performance materials is limited. Traditional high‐temperature synthetic methods constrain the range of materials achievable, hindering the ability to surpass crystal structure limitations and engineer defects. Here, a solution‐based synthetic approach is introduced, enabling RT synthesis of powders and exploration of densification at lower temperatures to influence the material's microstructure. The approach is exemplified by Ag2Se, an n‐type alternative to bismuth telluride. It is demonstrated that the concentration of Ag interstitials, grain boundaries, and dislocations are directly correlated to the sintering temperature, and achieve a figure of merit of 1.1 from RT to 100 °C after optimization. Moreover, insights into and resolve Ag2Se's challenges are provided, including stoichiometry issues leading to irreproducible performances. This work highlights the potential of RT solution synthesis in expanding the repertoire of high‐performance thermoelectric materials for practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.