Abstract
It is well known that data mining is a process of discovering unknown, hidden information from a large amount of data, extracting valuable information, and using the information to make important business decisions. And data mining has been developed into a new information technology, including regression, decision tree, neural network, fuzzy set, rough set, and support vector machine. This paper puts forward a rough set-based multiple criteria linear programming (RS-MCLP) approach for solving classification problems in data mining. Firstly, we describe the basic theory and models of rough set and multiple criteria linear programming (MCLP) and analyse their characteristics and advantages in practical applications. Secondly, detailed analysis about their deficiencies are provided, respectively. However, because of the existing mutual complementarities between them, we put forward and build the RS-MCLP methods and models which sufficiently integrate their virtues and overcome the adverse factors simultaneously. In addition, we also develop and implement these algorithm and models in SAS and Windows system platforms. Finally, many experiments show that the RS-MCLP approach is prior to single MCLP model and other traditional classification methods in data mining, and remarkably improve the accuracy of medical diagnosis and prognosis simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.