Abstract
A novel rough set approach is proposed in this paper to discover classification rules through a process of knowledge induction which selects decision rules with a minimal set of features for classification of real-valued data. A rough set knowledge discovery framework is formulated for the analysis of interval-valued information systems converted from real-valued raw decision tables. The minimal feature selection method for information systems with interval-valued features obtains all classification rules hidden in a system through a knowledge induction process. Numerical examples are employed to substantiate the conceptual arguments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.