Abstract
Cortical microtubules (MTs) participate in the spatial control of cell expansion and division that is required for plant growth and morphogenesis. Well-ordered transverse cortical MTs promote cell elongation and restrict radial cell expansion. The molecular mechanism controlling their ordering is poorly understood. We report the first known signaling pathway that promotes the organization of cortical MTs into parallel arrays oriented perpendicular to the axis of cell elongation in plants. Well-ordered MTs locally restrict cell expansion to promote indentation formation in the jigsaw-puzzle-shaped pavement cells of Arabidopsis leaves. Deleting ROP6, a Rho-family GTPase, randomized cortical MTs and released the localized restriction of cell expansion, whereas ROP6 overexpression enhanced MT ordering, turning the jigsaw-puzzle appearance of cells into a cylindrical shape. ROP6 directly binds and activates MT-associated RIC1 to achieve the MT ordering. The ROP6-RIC1 pathway also affects MT ordering of hypocotyl cells, showing a broad role for this pathway in the spatial regulation of cell expansion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.