Abstract

This study focuses on the operational and resource-constrained condition-based cleaning planning problem of integrated production and utility systems under uncertainty. For the problem under consideration, a two-stage scenario-based stochastic programming model that follows a rolling horizon modeling representation is introduced; resulting in a hybrid reactive-proactive planning approach. In the stochastic programming model, all the binary variables related to the operational status (i.e., startup, operating, shutdown, under online or offline cleaning) of the production and utility units are considered as first-stage variables (i.e., scenario independent), and most of the remaining continuous variables are second-stage variables (i.e., scenario dependent). In addition, enhanced unit performance degradation and recovery models due to the cumulative operating level deviation and cumulative operating times are presented. Terminal constraints for minimum inventory levels for utilities and products as well as maximum unit performance degradation levels are also introduced. Two case studies are presented to highlight the applicability and the particular features of the proposed approach as an effective means of dealing with the sophisticated integrated planning problem considered in highly dynamic environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.