Abstract

The Cbl protein functions both as a multivalent adaptor and a negative regulator of receptor tyrosine kinases (RTKs), the latter by directing polyubiquitination of RTKs. To study the function of Cbl in endothelial cell signalling and angiogenesis, wild-type Cbl and tyrosine kinase binding (TKB) domain mutated Cbl (G306E) were overexpressed in murine immortalised brain endothelial (IBE) cells. Wild-type Cbl cells exhibited enhanced proliferation in low serum compared with the control and G306E Cbl cells. Furthermore, up-regulated phosphorylation of fibroblast growth factor receptor 1 (FGFR-1) and Akt were observed in wild-type Cbl cells upon FGF-2 stimulation. A Cbl TKB domain mutant, G306E, disrupted the phosphorylation of the FGFR-1 but not that of FRS2. In the tubular morphogenesis assay, cells expressing wild-type Cbl initially formed tubular structures. These showed decreased stability and converted into cell aggregates, possibly due to a failure to cease proliferating. Our data support the idea that the wild-type Cbl cells exhibit enhanced proliferation, and thus lose their ability to differentiate appropriately. The present study reveals a role of the Cbl protein in FGF-2 dependent signalling in endothelial cells by its destabilisation of tubular structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call