Abstract

N-cadherin is one of the important molecules for cell to cell interaction in the development of the central nervous system (CNS). In this report, we have shown that N-cadherin mRNA and protein were increased rapidly in retinoic acid (RA)-induced neuronal differentiation of embryonic carcinoma P19 cells. To explore possible roles for N-cadherin during this process, N-cadherin-overexpressing P19 cell lines were established. These transfected cells could differentiate into neurofilament-expressing neurons in the absence of RA. RT-PCR revealed that the expression patterns of development-related genes, such as Oct-3/4, nestin, Notch-1, and Mash-1 were similar between the transfected P19 cells and the RA-induced wild-type P19 cells during their neuronal differentiation. On the contrary, the Wnt-1 gene was up-regulated in the N-cadherin-overexpressing P19 cells, but could not be detected in the wild-type P19 cells. These results suggest N-cadherin may play a role in neuronal differentiation of P19 cells, possibly through the Wnt-1 signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.