Abstract
PYP (photoactive yellow protein) is a photoreceptor protein, which is activated upon photo-isomerization of the p-coumaric acid chromophore and is inactivated as the chromophore is thermally back-isomerized within a second (in PYP(M)-to-PYP(dark) conversion). Here we have examined the mechanism of the rapid thermal isomerization by analyzing mutant PYPs of Met100, which was previously shown to play a major role in facilitating the reaction [Devanathan, S. et al. (1998) Biochemistry 37, 11563-11568]. The mutation to Lys, Leu, Ala, or Glu decelerated the dark state recovery by one to three orders of magnitude. By evaluating temperature-dependence of the kinetics, it was found that the retardation resulted unequivocally from elevations of activation enthalpy (DeltaH( double dagger )) but not the other parameters such as activation entropy or heat capacity changes. Another effect exerted by the mutations was an up-shift of the apparent pK(a) of the chromophore [the pK(a) of a titratable group (X) that controls the pK(a) of the chromophore] in the PYP(M)-decay process. The pK(a) up-shift and the DeltaH( double dagger ) elevation show an approximately linear correlation. We, therefore, postulate that the role of Met100 is to reduce the energy barrier of the PYP(M)-decay process by an indirect interaction through X and that the process is thereby facilitated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.