Abstract

Growth analysis techniques are used to test the hypothesis that chilling induces curd (flower) initiation in the cauliflower (Brassica oleracea Botrytis L. cv. Perfection) through inhibiting leaf growth, thereby increasing the availability of growth factors to the stem apex and enabling differentiation of the curd. Effects of chilling on leaf growth and curd induction are compared in juvenile and mature, vegetative plants. Chilling at 5°C reduced dry matter accumulation in the total leaf complement by ca 60% in juvenile plants and 40% in mature plants, compared to control plants growth at 20°C. Juvenile plants showed slower rates of leaf initiation than mature plants. Leaf initiation was retarded by chilling in both plant types with the most marked effect seen in the juvenile plants. This was consistent with dry matter availability to the stem apex limiting differentiation more severely in juvenile plants than in mature plants. The rate of dry matter accumulation in existing leaves, however, was faster in juvenile plants than in mature plants at 20°C. Plants that were juvenile during chilling produced an average of 43 leaves below the curd whereas those that were mature produced 25.Dry matter accumulation in younger leaves was more markedly inhibited by chilling than in older leaves. Chilling also reduced the rate at which enlarging leaves became positionally more remote from the stem apex. Possible roles for such leaves in regulating apical development are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call