Abstract

Synaptic vesicles (SVs) from excitatory synapses carry vesicular glutamate transporters (VGLUTs) that fill the vesicles with neurotransmitter. Although the essential function of VGLUTs as glutamate transporters has been well established, the evidence for additional cell-biological functions is more controversial. Both VGLUT1 and VGLUT2 disruptions in mice result in a reduced number of SVs away from release sites, flattening of SVs, and the appearance of tubular structures. Therefore, we analysed the morphology, biochemical composition and trafficking of SVs at synapses of VGLUT1(-/-) mice in order to test for a function of VGLUTs in the formation or clustering of SVs. Analyses with high-pressure freezing immobilisation and electron tomography pointed to a role of VGLUT1 transport function in the tonicity of excitatory SVs, explaining the aldehyde-induced flattening of SVs observed in VGLUT1(-/-) synapses. We confirmed the steep reduction in the number of SVs previously observed in VGLUT1(-/-) presynaptic terminals, but did not observe accumulation of endocytotic intermediates. Furthermore, SV proteins of adult VGLUT1(-/-) mouse brain tissue were expressed at normal levels in all subcellular fractions, suggesting that they were not displaced to another organelle. We thus assessed the mobility of the recently documented superpool of SVs. Synaptobrevin2-enhanced green fluorescent protein time lapse experiments revealed an oversized superpool of SVs in VGLUT1(-/-) neurons. Our results support the idea that, beyond glutamate loading, VGLUT1 enhances the tonicity of excitatory SVs and stabilises SVs at presynaptic terminals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.