Abstract

To review the important recent findings on the nature, characteristics and function of novel populations of immunosuppressive B-lymphocytes (Bregs) and their possible role as a regulatory cell population, potentially responsive to dendritic cells, in preventing and possibly controlling type 1 diabetes mellitus. Although almost all of the experimental work in immunosuppressive B-lymphocyte biology has focused on their role in arthritis and experimental inflammatory bowel disease, only recently has a role for Bregs in the regulation of type 1 diabetes been looked at more extensively. IL-10-producing Bregs are of significant interest, more so because of their potential modulation by tolerogenic dendritic cells. Additionally, novel populations have been discovered that could also be relevant in the regulation of diabetes autoimmunity. The unexpected discovery of a novel population of Bregs, whose frequency was upregulated in our phase I clinical trial of tolerogenic autologous dendritic cell administration in humans, opens a new frontier for basic and translational research into these novel cell populations. Bregs are a recently rediscovered population of suppressive lymphocytes whose activation, differentiation and function could be sensitive to tolerogenic dendritic cell networks. Modulation of these dendritic cell networks, or the Bregs directly, offers novel options to attenuate and reverse type 1 diabetes autoimmunity as a possible cure for the disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.