Abstract

Synaptic differentiation results from an exchange of informational molecules between synaptic partners during development. At the vertebrate neuromuscular junction, agrin is one molecule presented by the presynaptic motor neuron that plays an instructive role in postsynaptic differentiation of the muscle cell, most notably in aggregation of acetylcholine receptors (AChRs). Although agrin is the best-characterized synaptogenic molecule, its mechanism of action remains uncertain, but clearly, it requires the receptor tyrosine kinase MuSK (muscle-specific kinase), the intracellular protein rapsyn, an Src-like kinase, and cytoskeletal components. In addition, the transmembrane protein dystroglycan interacts with the cytoskeleton and is implicated in agrin responsiveness. This alpha-beta heterodimer can bind agrin via its extracellular alpha subunit and associates with the membrane cytoskeleton via its beta subunit. In this study, we demonstrate that overexpression of the beta subunit of dystroglycan in cultured muscle cells inhibits agrin-induced AChR clustering. Deletion analysis and point mutagenesis demonstrate that the inhibition is mediated by an intracellular, juxtamembrane region composed of basic amino acids. Finally, the inhibition mediated by beta-dystroglycan extends to the minimal agrin fragment required for AChR clustering, suggesting that dystroglycan plays an important role in postsynaptic differentiation in response to agrin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.