Abstract

Loading of articular cartilage during weight bearing is essential for the maintenance of cartilage function. Although certain cyclic loading protocols stimulate extracellular matrix synthesis, constant or static compression decreases proteoglycan and collagen synthesis in cartilage explants. The goal of this study was to determine whether the compression-induced decrease in proteoglycan synthesis involves an interleukin-1 (IL-1) signaling pathway. Cartilage explants were compressed 50% in the presence of IL-1 receptor antagonist (IL-1ra), and the incorporation of [35S]sulfate into macromolecules was measured. IL-1ra increased sulfate incorporation in compressed cartilage but not in cartilage maintained at the in situ thickness (0% compression). IL-1alpha and IL-1beta mRNAs were detected in cartilage compressed 50% for at least 3h, while nitric oxide synthase II mRNA was only detected in cartilage compressed 50% for 6h. The data support a role for the IL-1 receptor in the pathway linking static compression to reduced proteoglycan synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call