Abstract

Talin, an adaptor between integrin and the actin cytoskeleton at sites of cell adhesion, was recently found to be present at neuronal synapses, where its function remains unknown. Talin interacts with phosphatidylinositol-(4)-phosphate 5-kinase type Iγ, the major phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]–synthesizing enzyme in brain. To gain insight into the synaptic role of talin, we microinjected into the large lamprey axons reagents that compete the talin–PIP kinase interaction and then examined their effects on synaptic structure. A dramatic decrease of synaptic actin and an impairment of clathrin-mediated synaptic vesicle endocytosis were observed. The endocytic defect included an accumulation of clathrin-coated pits with wide necks, as previously observed after perturbing actin at these synapses. Thus, the interaction of PIP kinase with talin in presynaptic compartments provides a mechanism to coordinate PI(4,5)P2 synthesis, actin dynamics, and endocytosis, and further supports a functional link between actin and clathrin-mediated endocytosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.