Abstract

Recent studies in vitro have reported that the Methoprene-tolerant (Met) and Taiman (Tai) complex is the functional receptor of juvenile hormone (JH). Experiments in vivo of Met depletion have confirmed this factor's role in JH signal transduction, however, there is no equivalent data regarding Tai because its depletion in larval or nymphal stages of the beetle Tribolium castaneum and the bug Pyrrhocoris apterus results in 100% mortality. We have discovered that the cockroach Blattella germanica possesses four Tai isoforms resulting from the combination of two indels in the C-terminal region of the sequence. The presence of one equivalent indel-1 in Tai sequences in T. castaneum and other species suggests that Tai isoforms may be common in insects. Concomitant depletion of all four Tai isoforms in B. germanica resulted in 100% mortality, but when only the insertion 1 (IN-1) isoforms were depleted, mortality was significantly reduced and about half of the specimens experienced precocious adult development. This shows that Tai isoforms containing IN-1 are involved in transducing the JH signal that represses metamorphosis. Reporter assays indicated that both T. castaneum Tai isoforms, one that contains the IN-1 and another that does not (DEL-1) activated a JH response element (kJHRE) in Krüppel homolog 1 in conjunction with Met and JH. The results indicate that Tai is involved in the molecular mechanisms that repress metamorphosis, at least in B. germanica, and highlight the importance of distinguishing Tai isoforms when studying the functions of this transcription factor in development and other processes.

Highlights

  • Insect metamorphosis, either through gradual morphogenesis or abrupt morphogenesis mediated by the pupal stage, is essentially regulated by two hormones, 20hydroxyecdysone (20E) and juvenile hormone (JH). 20E triggers the successive moults throughout the life cycle, whereas JH represses metamorphosis [1,2,3]

  • It has been observed that depleting Met mRNA levels with RNAi in early larval stages of the holometabolan species Tribolium castaneum triggers precocious pupal morphogenesis [12,13], showing that Met is involved in the transduction of the anti-metamorphic JH signal

  • Using Met from T. castaneum, Charles et al [6] confirmed that the JH binding affinity is high (Kd of 2.9 nM in this case), that the PAS-B motif of Met is required and is sufficient to bind JH, and that when JH binds to a Met moiety in a Met-Met homodimer, the homodimer dissociates and JH+Met binds to another bHLH-PAS transcription factor named Taiman (Tai)

Read more

Summary

Introduction

Either through gradual morphogenesis (hemimetaboly) or abrupt morphogenesis mediated by the pupal stage (holometaboly), is essentially regulated by two hormones, 20hydroxyecdysone (20E) and juvenile hormone (JH). 20E triggers the successive moults throughout the life cycle, whereas JH represses metamorphosis [1,2,3]. The molecular mechanisms underlying the action of JH remained enigmatic until recently, when the transcription factor Methoprene-tolerant (Met) was reported as the JH receptor [6], and a number of components of the JH signalling pathway were identified [7,8]. Miura et al [11] showed that the D. melanogaster Met protein could bind JH with a very high affinity (Kd of 5.3 nM), providing the first hint that Met might play a role in JH reception. It has been observed that depleting Met mRNA levels with RNAi in early larval stages of the holometabolan species Tribolium castaneum triggers precocious pupal morphogenesis [12,13], showing that Met is involved in the transduction of the anti-metamorphic JH signal. Using Met from T. castaneum, Charles et al [6] confirmed that the JH binding affinity is high (Kd of 2.9 nM in this case), that the PAS-B motif of Met is required and is sufficient to bind JH, and that when JH binds to a Met moiety in a Met-Met homodimer, the homodimer dissociates and JH+Met binds to another bHLH-PAS transcription factor named Taiman (Tai)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.