Abstract

Because the induction of interleukin-1beta (IL-1beta) is critical to antibacterial host defenses and its excessive generation is a prominent component of sepsis, regulation of this proinflammatory cytokine is a critical factor in the immune response to lipopolysaccharide (LPS). We previously showed that LPS-induced IL-1beta expression was regulated by a Stat1-dependent, nitric oxide (NO)-mediated mechanism. Subsequent in vivo studies showed that whereas Stat1 had a role in the downregulation of IL-1beta expression, it had a more significant effect on its initial induction. Although both interferon-beta (IFN-beta) and IFN-gamma activate Stat1, the early appearance of IFN-beta in the circulation after LPS administration suggested its pivotal role in Stat1-mediated IL-1beta expression in vivo. Further in vitro analysis of peritoneal macrophages from IFN-beta (/), Stat1(/), and caspase-1(/) mice and their wild-type controls following LPS stimulation demonstrated that IL-1beta mRNA was expressed in these mice but not in macrophages from MyD88(/) mice. Despite the presence of IL-1beta mRNA, IL-1beta protein was markedly reduced in the absence of Stat1 activation in macrophages derived from IFN-beta (/) and Stat1(/) mice or in the absence of caspase-1 activity, which itself was dependent on Stat1 activation. These studies support the hypothesis that the expression of IL-1beta requires both the MyD88-dependent induction of IL-1beta mRNA and pro-IL-1beta as well as the MyD88-independent, Stat1-mediated processing of that gene product into active cytokine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call