Abstract

Hypothermia is considered to be responsible for sodium influx during cold hypoxic incubation. However, we have previously shown that hypothermia alone leads to a pronounced decrease in cellular sodium content when liver endothelial cells or hepatocytes are incubated under such conditions. In the research described here, we therefore studied the effects of hypothermia and hypoxia, alone or combined, on cellular sodium homeostasis and assessed the role sodium plays in the pathogenesis of hypoxic and hypothermic injury to cultured liver and kidney cells. Isolated hepatocytes and LLC-PK1 cells were incubated in Krebs-Henseleit buffer or a sodium-free modification thereof under normoxic and hypoxic conditions at 4 degrees C as well as at 37 degrees C. Cytosolic sodium concentration was determined in isolated hepatocytes under both warm and cold conditions using digital fluorescence microscopy and the Na+-sensitive dye sodium-binding benzofuran isophthalate. When hepatocytes were incubated under cold normoxic conditions the cellular sodium concentration decreased. However, it increased strongly under hypoxic conditions at 4 degrees C and at 37 degrees C. When either hepatocytes or LLC-PK1 cells were incubated under hypoxic conditions at 4 degrees C or 37 degrees C, sodium-free medium provided protection. In contrast, sodium-free medium did not alleviate the hypothermic injury observed when cells were incubated under cold normoxia. The sodium influx observed during cold hypoxia is triggered by hypoxia and not by hypothermia. Sodium plays a prominent role in hypoxic injury to cultured liver and kidney cells, although hypothermic injury of these cells is independent of sodium homeostasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.