Abstract
Impaired DNA damage responses are associated with several diseases, including pregnancy complications. Recent research identified an ATM-kinase dependent function for the nuclear isoform of the receptor for advanced glycation end-products (RAGE) during double strand break (DSB)-repair. RAGE contributes to end-resectioning of broken DNA sites by binding with the MRE11-Rad50-Nbs1 (MRN) complex. Placental research is limited regarding the impact of genomic instability and the mechanism for potential repair. We tested the hypothesis regarding the involvement of RAGE during the repair of placental DNA-DSBs. We first identified that the pregnancy complications of PE and preterm labor (PTL) experience loss of genomic integrity and an in vitro trophoblast cell model was used to characterize trophoblast DSBs. Colocalized immunofluorescence of γ-H2AX and RAGE support the potential involvement of RAGE in cellular responses to DNA-DSBs. Immunoblotting for both molecules in PE and PTL placenta samples and in trophoblast cells validated a connection. Co-immunoprecipitation studies revealed interactions between RAGE and pATM and MRE11 during DNA-DSBs. Reduced cellular invasion confirmed the role of genomic instability in trophoblastic function. Collectively, these experiments identified genomic instability in pregnancy complications, the impact of defective DNA on trophoblast function, and a possible RAGE-mediated mechanism during DNA-DSB repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.