Abstract

The morphology of cells in vivo can arise from a variety of mechanisms. In the Caenorhabditis elegans hermaphrodite gonad, the distal tip cell (DTC) elaborates into a complex plexus over a relatively short developmental time period, but the mechanisms underlying this change in cell morphology are not well defined. We correlated the time of DTC elaboration with the L4-to-adult molt, but ruled out a relevant heterochronic pathway as a cue for DTC elaboration. Instead, we found that the timing of gonad elongation and aspects of underlying germline flux influence DTC elaboration. We propose a 'hitch and tow' aspect of organ-level dynamics that contributes to cellular morphogenesis, whereby germline flux drags the flexible DTC cell cortex away from its stationary cell body. More broadly, we speculate that this mechanism may contribute to cell shape changes in other contexts with implications for development and disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.