Abstract

Muscarinic acetylcholine receptors exert slow and prolonged synaptic effects in both vertebrate and invertebrate nervous systems. Through activation of G proteins, they typically decrease intracellular cAMP levels by inhibition of adenylate cyclase or stimulate phospholipase C and the turnover of inositol phosphates. In insects, muscarinic receptors have been credited with two main functions: inhibition of transmitter release from sensory neuron terminals and regulation of the excitability of motoneurons and interneurons. Our pharmacological studies with intact and behaving grasshoppers revealed a functional role for muscarinic acetylcholine receptors as being the basis for specific arousal in defined areas of the brain, underlying the selection and control of acoustic communication behavior. Periodic injections of acetylcholine into distinct areas of the brain elicited songs of progressively increasing duration. Coinjections of the muscarinic receptor antagonist scopolamine and periodic stimulations with muscarine identified muscarinic receptor activation as being the basis for the underlying accumulation of excitation. In contrast to reports from other studies on functional circuits, muscarinic excitation was apparently mediated by activation of the adenylate cyclase pathway. Stimulation of adenylate cyclase with forskolin and of protein kinase A with 8-Br-cAMP mimicked the stimulatory effects of muscarine whereas inhibition of adenylate cyclase with SQ22536 and of protein kinase A with H-89 and Rp-cAMPs suppressed muscarine-stimulated singing behavior. Activation of adenylate cyclase by muscarinic receptors has previously been reported from studies on membrane preparations and heterologous expression systems, but a physiological significance of this pathway remained to be demonstrated in an in vivo preparation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.