Abstract

The mechanisms which cause macromolecules to form discrete compartments within the nucleus are not understood. Here, two ubiquitous compartments, nucleoli, and PML bodies, are shown to disassemble when K562 cell nuclei expand in medium of low monovalent cation concentration; their major proteins dispersed as seen by immunofluorescence and immunoelectron microscopy, and nucleolar transcript elongation fell by ∼85%. These compartments reassembled and nucleolar transcription recovered in the same medium after adding inert, penetrating macromolecules (8 kDa polyethylene glycol (PEG), or 10.5 kDa dextran) to 12% w/v, showing that disassembly was not caused by the low cation concentration. These responses satisfy the criteria for crowding or volume exclusion effects which occur in concentrated mixtures of macromolecules; upon expansion the macromolecular concentration within the nucleus falls, and can be restored by PEG or dextran. These observations, together with evidence of a high concentration of macromolecules in the nucleus (in the range of 100 mg/ml) which must cause strong crowding forces, suggest strongly that these forces play an essential role in driving the formation, and maintaining the function of nuclear compartments. This view is consistent with their dynamic and mobile nature and can provide interpretations of several unexplained observations in nuclear biology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.