Abstract

Calreticulin, a candidate C1q receptor, was shown recently to be present on the surface of human neutrophils in association with glycosylphosphatidylinositol (GPI) anchored proteins, particularly CD59. In this study, we show that antibodies to CD59, as well as to every other GPI-anchored protein tested, inhibited the C1q-triggered release of O 2 − from PMN. Methyl β cyclodextrin (MβCD) treatment of the cells to disrupt lipid rafts also prevented C1q-triggered O 2 − production. β 2 integrin-dependent co-stimulation is required for O 2 − production from PMN, however MβCD had no effect on LFA-1 or Mac-1-mediated adhesion, soluble iC3b binding to PMN, or spreading and migration, all of which suggested that PMN integrin function remained intact. Flow cytometric analysis of PMN treated with MβCD showed upregulation of PMN granule-associated integrins and a corresponding increase in integrin activation-reporter epitopes, in contrast to the decreased expression of GPI-anchored antigens. These data support a model where lipid rafts and their associated GPI-anchored proteins are critical for C1q-triggered O 2 − production, consistent with a model where calreticulin serves as the C1q receptor for O 2 − production from PMN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.