Abstract

Insulin is known to stimulate endothelial nitric oxide synthesis, although much remains unknown about the intracellular mechanisms involved. This study aims to examine, in human endothelial cells, the specific contribution of heterotrimeric Gi proteins and extracellular signal-regulated protein kinases 1/2 (ERK1/2) in insulin signalling upstream of nitric-oxide-dependent cyclic GMP production. Human umbilical vein endothelial cells were treated with 1 nmol/l insulin in the presence or absence of inhibitors of tyrosine kinases (erbstatin), Gi proteins (pertussis toxin) or ERK1/2 (PD098059 or U0126), and nitric oxide production was examined by quantification of intracellular cyclic GMP. Activation/phosphorylation of ERK1/2 by insulin was examined by immunoblotting with specific antibodies, and direct association of the insulin receptor with Gi proteins was examined by immunoprecipitation. Treatment of cells with a physiological concentration of insulin (1 nmol/l) for 5 min increased nitric-oxide-dependent cyclic GMP accumulation by 3.3-fold, and this was significantly inhibited by erbstatin. Insulin-stimulated cyclic GMP production was significantly reduced by pertussis toxin and by the inhibitors of ERK1/2, PD098059 and U0126. Immunoblotting indicated that insulin stimulated the phosphorylation of ERK1/2 after 5 min and 1 h, and that this was completely abolished by pertussis toxin, but insensitive to the nitric oxide synthase inhibitor L-NAME. No direct interaction of the insulin receptor beta with Gialpha2 could be demonstrated by immunoprecipitation. This study demonstrates, for the first time, that nitric oxide production induced by physiologically relevant concentrations of insulin, is mediated by the post-receptor activation of a pertussis-sensitive GTP-binding protein and subsequent downstream activation of the ERK1/2 cascade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.