Abstract

The outgrowth of the vertebrate limb bud is the result of a reciprocal interaction between the mesenchyme and a specialized region of the ectoderm, the apical ectodermal ridge (AER), which overlies it. Signals emanating from the AER act to maintain the underlying mesenchyme, called the progress zone, in a highly proliferative and undifferentiated state. Removal of the AER results in the cessation of limb bud growth, thus causing limb truncation. The best candidates for this AER-derived signal are members of the fibroblast growth factor (FGF) family, in particular FGF-4, which can maintain limb bud outgrowth following removal of the AER. However, FGF-4 is only expressed after considerable outgrowth has occurred and a well-developed limb bud has formed, and then only in the posterior part of the AER. Likewise, the other FGFs studied to date are not candidates for this activity. We report evidence that a recently identified member of this family, FGF-8, is expressed in the ectoderm of the prospective limb territory prior to morphological outgrowth of the limb bud in both mouse and chick. Thereafter, expression is maintained throughout the AER during limb development. We have produced and purified the FGF-8 protein, and shown that it will substitute for the AER in maintaining limb bud outgrowth in mouse embryos from which the AER has been surgically removed. FGF-8 does not, however, maintain expression of the sonic hedgehog gene. These results indicate that FGF-8 is an AER-derived mitogen that stimulates limb bud outgrowth. Moreover, our data suggest that FGF-8 may also be an ectodermally derived mitogen that stimulates the onset of limb bud outgrowth (budding) in the absence of a morphological AER, and indicate the possible involvement of FGF-8 in the establishment of the limb field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call