Abstract

Mutations in ebi were isolated as enhancers of an over-proliferation phenotype generated by elevated E2F/DP activity in the Drosophila eye. ebi alleles also strongly suppress a phenotype caused by the cyclin-dependent kinase inhibitor p21, restoring S phases in the second mitotic wave of the developing eye disk. ebi mutant embryos display ectopic S phases within the peripheral nervous system and central nervous system at a time in development when neuronal precursor cells would normally begin to differentiate. Consistent with this, we find that ebi mutants have a reduced capacity to undergo neuronal differentiation, that Ebi physically interacts with Sina and phyllopod, and that Ebi promotes Ttk88 degradation in vitro and in S2 cells. Ectopic expression of Ttk88 inhibited differentiation in embryos and eye discs; however, this block to differentiation was insufficient to promote S phase entry in either of the situations where ebi mutations gave this effect. We conclude that Ebi has two distinct functions; it promotes the degradation of a repressor of neuronal differentiation (Ttk88), and has a second independent function that limits S phase entry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.