Abstract

Previously, we demonstrated the reductive dehalogenation of dichlorobenzene (DCB) isomers to monochlorobenzene (MCB), and MCB to benzene in sediment microcosms derived from a chlorobenzene-contaminated site. In this study, enrichment cultures were established for each DCB isomer and each produced MCB and trace amounts of benzene as end products. MCB dehalogenation activity could only be transferred in sediment microcosms. The 1,2-DCB-dehalogenating culture was studied the most intensively. Whereas Dehalococcoides spp. were not detected in any of the microcosms or cultures, Dehalobacter spp. were detected in 16S rRNA gene clone libraries from 1,2-DCB enrichment cultures, and by PCR using Dehalobacter-specific primers in 1,3-DCB and 1,4-DCB enrichments and MCB-dehalogenating microcosms. Quantitative PCR showed Dehalobacter 16S rRNA gene copies increased up to 3 orders of magnitude upon dehalogenation of DCBs or MCB, and that nearly all of bacterial 16S rRNA genes in a 1,2-DCB-dehalogenating culture belonged to Dehalobacter spp. Dehalobacter 16S rRNA genes from DCB enrichment cultures and MCB-dehalogenating microcosms showed considerable diversity, implying that 16S rRNA sequences do not predict dehalogenation-spectra of Dehalobacter spp. These studies support a role for Dehalobacter spp. in the reductive dehalogenation of DCBs and MCB, and this genus should be considered for its potential impact on chlorobenzene fate at contaminated sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call