Abstract

We have used the perforated-patch variation of whole cell patch-clamp techniques, measurements of cytosolic calcium with use of fura 2, and secretion measurements with use of the reverse-hemolytic plaque assay to address the role of depolarizing background currents in maintaining spontaneous action potentials and spontaneous secretion from rat lactotrophs in primary culture. Replacement of bath sodium with tris(hydroxymethyl)aminomethane or N-methyl-D-glucamine caused a dramatic hyperpolarization of the cells, a cessation of spontaneous action potentials, and an increase in input resistance of cells. Tetrodotoxin had no effect on spontaneous action potentials, and removal of bath calcium stopped spiking but did not hyperpolarize the cells. The hyperpolarization in response to removal of bath sodium was associated with a decrease in cytosolic calcium levels. Finally, removal of bath sodium caused a decrease in spontaneous secretion of prolactin from lactotrophs. These data suggest that a background sodium current is essential to drive the membrane to threshold for firing spontaneous calcium-dependent action potentials in lactotrophs. This, in turn, results in elevated intracellular calcium, which supports spontaneous secretion of prolactin from these cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.