Abstract

Strong heterogeneity and complex pore systems of carbonate reservoir rock make its rock physics model building and fluid substitution difficult and complex. However, rock physics models connect reservoir parameters with seismic parameters and fluid substitution is the most effective tool for reservoir prediction and quantitative characterization. On the basis of analyzing complex carbonate reservoir pore structures and heterogeneity at seismic scale, we use the gridding method to divide carbonate rock into homogeneous blocks with independent rock parameters and calculate the elastic moduli of dry rock units step by step using different rock physics models based on pore origin and structural feature. Then, the elastic moduli of rocks saturated with different fluids are obtained using fluid substitution based on different pore connectivity. Based on the calculated elastic moduli of rock units, the Hashin-Shtrikman-Walpole elastic boundary theory is adopted to calculate the carbonate elastic parameters at seismic scale. The calculation and analysis of carbonate models with different combinations of pore types demonstrate the effects of pore type on rock elastic parameters. The simulated result is consistent with our knowledge of real data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.