Abstract

Dynamic complex matrix equation (DCME) is frequently encountered in the fields of mathematics and industry, and numerous recurrent neural network (RNN) models have been reported to effectively find the solution of DCME in no noise environment. However, noises are unavoidable in reality, and dynamic systems must be affected by noises. Thus, the invention of anti-noise neural network models becomes increasingly important to address this issue. By introducing a new activation function (NAF), a robust zeroing neural network (RZNN) model for solving DCME in noisy-polluted environment is proposed and investigated in this paper. The robustness and convergence of the proposed RZNN model are proved by strict mathematical proof and verified by comparative numerical simulation results. Furthermore, the proposed RZNN model is applied to manipulator trajectory tracking control, and it completes the trajectory tracking task successfully, which further validates its practical applied prospects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.