Abstract
For the mini-interferometric synthetic aperture radar system mounted on small aircraft or unmanned aerial vehicles, yaw and pitch angle deviations can be considerably high due to their small size and atmospheric turbulence. Moreover, we cannot install a large-volume, heavy-weight, and high-cost inertial navigation system limited by the aircraft's carrying capacity and system cost. In view of the problem, this letter proposes a robust yaw and pitch angle estimation method based on the relationship between range-variant Doppler centroid and attitude angles. For each azimuth moment, estimate the range-variant Doppler centroid for each range gate and solve the range-variant Doppler centroid model using a total least squares method to obtain a robust yaw and pitch angle estimation result. The comparison of the estimated and recorded yaw and pitch angles by a high-accuracy position and orientation system validated the effectiveness and reliability of our proposed yaw and pitch angle estimation method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.