Abstract

In this paper, the fractional reduced differential transform method (FRDTM) is used to obtain the series solution of time-fractional seventh-order Sawada–Kotera (SSK) and Lax’s KdV (LKdV) equations under initial conditions (ICs). Here, the fractional derivatives are considered in the Caputo sense. The results obtained are contrasted with other previous techniques for a specific case, [Formula: see text] revealing that the presented solutions agree with the existing solutions. Further, convergence analysis of the present results with an increasing number of terms of the solution and absolute error has also been studied. The behavior of the FRDTM solution and the effects on different values [Formula: see text] are illustrated graphically. Also, CPU-time taken to obtain the solutions of the title problems using FRDTM has been demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.