Abstract
A hierarchical surface was fabricated by electrodeposition of copper coating and chemical oxidation to form copper oxide, and the surface energy was lowered by chemical modification. The optimum parameters including seven days of chemical modification, 0.12mol/L of (NH4)2S2O8, 2.5mol/L of KOH and 60°C of oxidation temperature were used to fabricate the superhydrophobic surface with a water contact angle up to around 160° and a sliding angle about 3° on a steel substrate. Silver mirror effect and simple calculation showed that the wetting state between a water droplet and the hierarchical superhydrophobic surface was the Cassie state. This superhydrophobic surface had excellent self-cleaning properties for two different sizes (∼50μm and 150μm) of fly-ash cenospheres, and we gave the reason for its self-cleaning properties by the force involved at the interface. We also investigated the dynamics of water droplets impinging onto the superhydrophobic surface with different impact velocities, ranging from 0.31m/s to 1.71m/s, and found that all the water droplets could rebound from the superhydrophobic surface, with no trace of adhesion. In addition, a variety of tests were performed to assess the robustness of the superhydrophobic surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.