Abstract

Vibration-based structural health monitoring (SHM) systems are useful tools for assessing structural safety performance quantitatively. When employing traditional contact sensors, achieving high-resolution spatial measurements for large-scale structures is challenging, and fixed contact sensors may also lose dependability when the lifetime of the host structure is surpassed. Researchers have paid close attention to computer vision because it is noncontact, saves time and effort, is inexpensive, and has high efficiency in giving visual perception. In advanced noncontact measurements, digital cameras can capture the vibration information of structures remotely and swiftly. Thus, this work studies a system for recognizing structural vibration. The system ensures acquiring high-quality structural vibration signals by the following: 1) Establishing a novel image preprocessing, which includes visual partitioning measurement and image enhancement techniques; 2) initial recognition of structural vibration using phase-based optical flow estimation (POFE), which introduces 2-D Gabor wavelets to extract the independent phase information of the image to track the natural texture targets on the surface of the structure; 3) extracting the practical vibration information of the structure using mode decomposition to remove the complex environment of the camera vibration and other noises; 4) employing phase-based motion magnification (PMM) techniques to magnify small vibration signals, and then recognizing the complete information on the vibration time range of the structure. The research results of the laboratory experiments and field testing conducted under three different cases reveal that the system can recognize structural vibration in complicated environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call