Abstract
A well-performing data-driven sparse sensor deployment strategy is critical for marine monitoring systems, as it enables the optimal reconstruction of marine physical quantities with fewer sensors. However, ocean data typically contain substantial amounts of noise, including outliers (incomplete data) and inherent measurement noise, which heightens the complexity of sensor deployment. Therefore, this study optimizes the sparse sensor placement model by establishing noise indicators, including small noise weight and large noise weight, which are measured by entropy to minimize the prediction bias. Building on this, a robust sparse sensor placement algorithm is proposed, which utilizes the block coordinate update (BCU) iteration method to solve the function. During the iterative updating process, the proposed algorithm simultaneously updates the selection matrix, reconstruction matrix, and noise matrix. This allows for effective identification and mitigation of noise in the data through evaluation. Consequently, the deployed sensors achieve superior reconstruction performance compared to other deployment methods that do not incorporate noise evaluation. Experiments are also conducted on datasets of sea surface temperature (SST) and global ocean salinity, which demonstrate that our strategy significantly outperforms several other considered methods in terms of reconstruction accuracy while enabling autonomous sensor deployment under noisy conditions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.