Abstract

The extraction of structural object metrics from a next-generation remote sensing modality, namely waveform Light Detection and Ranging (LiDAR), has garnered increasing interest from the remote sensing research community. However, the raw incoming (received) LiDAR waveform typically exhibits a stretched, misaligned, and relatively distorted character. In other words, the LiDAR signal is smeared and the effective temporal (vertical) resolution decreases, which is attributed to a fixed time span allocated for detection, the sensor's variable outgoing pulse signal, off-nadir scanning, the receiver impulse response impacts, and system noise. Theoretically, such a loss of resolution and increased data ambiguity can be remediated by using proven signal preprocessing approaches. In this paper, we present a robust signal preprocessing chain for waveform LiDAR calibration, which includes noise reduction, deconvolution, waveform registration, and angular rectification. This preprocessing chain was initially validated using simulated waveform data, which were derived via the digital imaging and remote sensing image generation modeling environment. We also verified the approach using real small-footprint waveform LiDAR data collected by the Carnegie Airborne Observatory in a savanna region of South Africa and specifically in terms of modeling woody biomass in this region. Metrics, including the spectral angle for cross-section recovery assessment and goodness-of-fit (R2) statistics, along with the root-mean-squared error for woody biomass estimation, were used to provide a comprehensive quantitative evaluation of the performance of this preprocessing chain. Results showed that our approach significantly increased our ability to recover the temporal signal resolution, improved geometric rectification of raw waveform LiDAR, and resulted in improved waveform-based woody biomass estimation. This preprocessing chain has the potential to be applied across the board for high fidelity processing of small-footprint waveform LiDAR data, thereby facilitating the extraction of valid and useful structural metrics from ground objects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call