Abstract

In a multi-tenant cloud, cloud vendors provide services ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e.g.</i> , elastic load-balancing, virtual private networks) on service nodes for tenants. Thus, the mapping of tenants’ traffic and service nodes is an important issue in multi-tenant clouds. In practice, unreliability of service nodes and uncertainty/dynamics of tenants’ traffic are two critical challenges that affect the tenants’ QoS. However, previous works often ignore the impact of these two challenges, leading to poor system robustness when encountering system accidents. To bridge the gap, this paper studies the problem of robust service mapping in multi-tenant clouds (RSMP). Due to traffic dynamics, we take a two-step approach: <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">service node assignment</i> and <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">tenant traffic scheduling</i> . For service node assignment, we prove its NP-Hardness and analyze its problem difficulty. Then, we propose an efficient algorithm with bounded approximation factors based on randomized rounding and knapsack. For tenant traffic scheduling, we design an approximation algorithm based on fully polynomial time approximation scheme (FPTAS). The proposed algorithm achieves the approximation factor of 2+ <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\epsilon $ </tex-math></inline-formula> , where <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\epsilon $ </tex-math></inline-formula> is an arbitrarily small value. Both small-scale experimental results and large-scale simulation results show the superior performance of our proposed algorithms compared with other alternatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.