Abstract
This work addresses a critical issue: the deterioration of concrete structures due to fine-grained cracks, which compromises their strength and longevity. To tackle this problem, experts have turned to computer vision (CV) based automated strategies, incorporating object detection and image segmentation techniques. Recent efforts have integrated complex techniques such as deep convolutional neural networks (DCNNs) and transformers for this task. However, these techniques encounter challenges in localizing fine-grained cracks. This paper presents a self-supervised 'you only look once' (SS-YOLO) approach that utilizes a YOLOv8 model. The novel methodology amalgamates different attention approaches and pseudo-labeling techniques, effectively addressing challenges in fine-grained crack detection and segmentation in concrete structures. It utilizes convolution block attention (CBAM) and Gaussian adaptive weight distribution multi-head self-attention (GAWD-MHSA) modules to accurately identify and segment fine-grained cracks in concrete buildings. Additionally, the assimilation of curriculum learning-based self-supervised pseudo-labeling (CL-SSPL) enhances the model's ability when applied to limited-size data. The efficacy and viability of the proposed approach are demonstrated through experimentation, results, and ablation analysis. Experimental results indicate a mean average precision (mAP) of at least 90.01%, an F1 score of 87%, and an intersection over union threshold greater than 85%. It is evident from the results that the proposed method yielded at least 2.62% and 4.40% improvement in mAP and F1 values, respectively, when tested on three diverse datasets. Moreover, the inference time taken per image is 2 ms less than that of the compared methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.