Abstract
We have developed a novel type of a positive screen for the discovery of antibacterial compounds that target the Escherichia coli replication initiator protein DnaA. DnaA is an essential replication protein, conserved in (almost) all bacteria--including all human pathogens--and no existing antibiotics target the main components of the DNA replication machinery. This makes DnaA an attractive target and compounds discovered by this screen will constitute a new group of antibiotics. The conditional mutant, dnaA219, has a cold sensitive phenotype due to overreplication. In the screen, a DnaA inhibitor will reduce DnaA overactivity and thus restore growth at the nonpermissive temperature. This positive type of selection utilizes the rare phenomenon of lethal overactivity. In addition, the mutant strain has been made independent of DnaA activity by introduction of an alternative initiation pathway that allows growth under conditions of complete knockdown of DnaA. The resulting dnaA219rnhA strain is the basis of a robust, cell-based assay amenable to high-throughput screening. The screening assay has been validated against (1) a library of microbial fermentation extracts and (2) a known intracellular DnaA inhibitor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.