Abstract

In many applications of zero-inflated models, score tests are often used to evaluate whether the population heterogeneity as implied by these models is consistent with the data. The most frequently cited justification for using score tests is that they only require estimation under the null hypothesis. Because this estimation involves specifying a plausible model consistent with the null hypothesis, the testing procedure could lead to unreliable inferences under model misspecification. In this paper, we propose a score test of homogeneity for zero-inflated models that is robust against certain model misspecifications. Due to the true model being unknown in practical settings, our proposal is developed under a general framework of mixture models for which a layer of randomness is imposed on the model to account for uncertainty in the model specification. We exemplify this approach on the class of zero-inflated Poisson models, where a random term is imposed on the Poisson mean to adjust for relevant covariates missing from the mean model or a misspecified functional form. For this example, we show through simulations that the resulting score test of zero inflation maintains its empirical size at all levels, albeit a loss of power for the well-specified non-random mean model under the null. Frequencies of health promotion activities among young Girl Scouts and dental caries indices among inner-city children are used to illustrate the robustness of the proposed testing procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.