Abstract
Segment-based maps as sub-class of feature-based mapping have been widely applied in simultaneous localization and map building (SLAM) in autonomous mobile robots. In this paper, a robust regression model is proposed for segment extraction in static and dynamic environments. We adopt the MM-estimate to consider the noise of sensor data and the outliers that correspond to dynamic objects such as the people in motion. MM-estimates are interesting as they combine high efficiency and high breakdown point in a simple and intuitive way. Under the usual regularity conditions, including symmetric distribution of the errors, these estimates are strongly consistent and asymptotically normal. This robust regression technique is integrated with the extended Kalman filter (EKF) to build a consistent and globally accurate map. The EKF is used to estimate the pose of the robot and state of the segment feature. The underpinning experimental results that have been carried out in static and dynamic environments illustrate the performance of the proposed segment extraction method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.