Abstract

AbstractIn this paper, we present new developments in the formulation of a new class of level set method for medical image segmentation. In this work, a new speed function of level set framework is proposed. The region statistical information, instead of the conventional image gradient information, is fused into the level set fundamental model to improve the robustness of the segmentation for medical images. The new method has some advantages over classical level set methods especially in the situations where edges are weak and fuzzy. A number of experiments on MR, US and CT images were performed to evaluate the new method. Experimental results are given to illustrate the effectiveness and robustness of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.