Abstract

This paper presents a more robust reconstruction algorithm to solve the genus restriction of displaced subdivision surface (DSS) from unorganized points. DSS is a useful mesh representation to guarantee the memory efficiency by storing a vertex position as one scalar displacement value, which is measured from the original mesh to its parametric domain. However, reconstructing DSS from unorganized points has some defects such as the incorrect approximation of concave region and the limited application of genus-0. Based on volumetric approach, our new cell carving method can easily and quickly obtain the shape of point clouds and preserve its genus. In addition, using interpolatory subdivision scheme, our displaced butterfly subdivision surface is also effective multiresolution representation, because it samples exclusively new odd vertices at each level, compared with previous works to resample all vertices of every level. We demonstrate that displaced butterfly subdivision surface is an effective multiresolution representation that overcome the topological restriction and preserve the detailed features nicely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.