Abstract
Low-frequency oscillations are hazardous to power system operation, and can lead to cascading failures if not detected and mitigated in a timely manner. This paper presents a robust and automated real-time monitoring system for detecting grid oscillations and analyzing their mode shapes using PMU measurements. A novel Extended Kalman Filtering (EKF) based approach is introduced to detect and analyze oscillations. To further improve the accuracy and efficiency of the presented software system, the EKF approach takes advantages of three effective signal processing methods (including Prony's Method, Hankel Total Least Square (HTLS) Method, EKF) and adopts a novel voting schema to significantly reduce the computation cost. Results from these methods are processed through a timeseries filter to ensure the consistency of detected oscillations and reduce the number of false alarms. The Density-based Spatial Clustering of Applications with Noise (DBSCAN) method is used to accurately classify oscillation modes and the PMU measurement channels. The LFODA system has been functioning well in the State Grid Jiangsu Electric Power Company with 176 PMUs and 1000+ channels since February 2018, demonstrating outstanding performance in reducing false alarms with much less computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.