Abstract

Abstract Two-dimensional instead of three-dimensional computational fluid dynamic solutions of flow problems are quite often used in industry to facilitate short design turn-around times with varying degrees of success. A simple and robust approach for improving the accuracy of two-dimensional computational fluid dynamics solutions for problems involving internal flow passages in industrial applications is presented. The technique utilizes an approximation to the shearing stresses that act in the fully three-dimensional case but are ignored in the traditional two-dimensional approximation. Although the technique does not fully account for all the three-dimensional effects in such flows, it gives a reasonable estimate of the operation of devices with internal flows, even those involving transients. The usefulness and accuracy of the method are demonstrated through the application of the method to predict the performance of a supersonic fluidic oscillator for industrial design purposes. This brief provides industrial designers with a simple and robust tool for improving the accuracy of their computational fluid dynamic simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.