Abstract

The control accuracy of traditional deadbeat predictive control of surface-mount permanent magnet synchronous motors (SPMSM) is susceptible to model parameters and environmental disturbances. This paper introduces an internal model disturbance observer (IMDO) into the current loop predictive control, which can real-time compensation of d and q axis voltages to improve current loop control accuracy. First, according to the control model of SPMSM, calculate the stability domain of the predictive control algorithm; then, the observer is designed, and the system disturbance obtained by the internal model control equation is multiplied by the compensation coefficient to the d and q axis voltages. Finally, the simulation results verify that the proposed algorithm can improve the robustness of predictive control and improve the control performance of predictive control when the parameters are disturbed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.