Abstract

This article presents a robust nonlinear model predictive control (NMPC) scheme for autonomous navigation of underwater robotic vehicles operating in a constrained workspace including the static obstacles. In particular, the purpose of the controller is to guide the vehicle toward specific way points with guaranteed input and state constraints. Various constraints, such as obstacles, workspace boundaries, predefined upper bounds for the velocity of the robotic vehicle, and thruster saturations, are considered during the control design. Moreover, the proposed control scheme is designed at dynamic level, and it incorporates the full dynamics of the vehicle in which the ocean currents are also involved. Hence, taking the thrusts as the control inputs of the robotic system and formulating them accordingly, the vehicle exploits the ocean current dynamics when these are in favor of the way-point tracking mission, resulting in reduced energy consumption by the thrusters. The robustness of the closed-loop system against parameter uncertainties has been analytically guaranteed with convergence properties. The performance of the proposed control strategy is experimentally verified using a 4 degrees of freedom (DoF) underwater robotic vehicle inside a constrained test tank with sparse static obstacles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.