Abstract

We consider an elliptic optimal control problem in two dimensions, in which the control variable corresponds to the Neumann data on a boundary segment, and where the performance functional is regularized to ensure that the problem is well posed. A finite element discretization of this control problem yields a saddle point linear system, which can be reduced to a symmetric positive definite Hessian system for determining the control variables. We formulate a robust preconditioner for this reduced Hessian system, as a matrix product involving the discrete Neumann to Dirichlet map and a mass matrix, and show that it yields a condition number bound which is uniform with respect to the mesh size and regularization parameters. On a uniform grid, this preconditioner can be implemented using a fast sine transform. Numerical tests verify the theoretical bounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call