Abstract

Efficacy of candidate antibacterial treatments must be demonstrated in animal models of infection as part of the discovery and development process, preferably in models which mimic the intended clinical indication. A method for inducing robust lung infections in immunocompetent rats and mice is described which allows for the assessment of treatments in a model of serious pneumonia caused by S. pneumoniae, H. influenzae, P. aeruginosa, K. pneumoniae or A. baumannii. Animals are anesthetized, and an agar-based inoculum is deposited deep into the lung via nonsurgical intratracheal intubation. The resulting infection is consistent, reproducible, and stable for at least 48 h and up to 96 h for most isolates. Studies with marketed antibacterials have demonstrated good correlation between in vivo efficacy and in vitro susceptibility, and concordance between pharmacokinetic/pharmacodynamic targets determined in this model and clinically accepted targets has been observed. Although there is an initial time investment when learning the technique, it can be performed quickly and efficiently once proficiency is achieved. Benefits of the model include elimination of the neutropenic requirement, increased robustness and reproducibility, ability to study more pathogens and isolates, improved flexibility in study design and establishment of a challenging infection in an immunocompetent host.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.