Abstract
We describe and illustrate methods for obtaining a parsimonious sinusoidal series representation or model of biological time-series data. The methods are also used to identify nonlinear systems with unknown structure. A key aspect is a rapid search for significant terms to include in the model for the system or the time-series. For example, the methods use fast and robust orthogonal searches for significant frequencies in the time-series, and differ from conventional Fourier series analysis in several important respects. In particular, the frequencies in our resulting sinusoidal series need not be commensurate, nor integral multiples of the fundamental frequency corresponding to the record length. Freed of these restrictions, the methods produce a more economical sinusoidal series representation (than a Fourier series), finding the most significant frequencies first, and automatically determine model order. The methods are also capable of higher resolution than a conventional Fourier series analysis. In addition, the methods can cope with unequally-spaced or missing data, and are applicable to time-series corrupted by noise. Finally, we compare one of our methods with a well-known technique for resolving sinusoidal signals in noise using published data for the test time-series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.